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Estimation of Hilbert space

valued parameters by the method of sieves.

[. Introduction By now the method of sieves, first suggested by Grenander, has

become a fairly common technique in the infinite dimensional parameter (:stima-

tion. There are several specific examples (see Grenander (1981), Geman (1981),

Karr (1987)) where this method has yielded consistent estimators with good asymp-

totic properties. However, the situation is quite different when it comes to finding

general conditions which imply the consistency of a sieve estimator and give an idea

about its rate of convergence.

The first step in this direction was taken by Geman & Hwang (1982) who general-

ized the Wald's (1949) proof of the consistency of the maximum likelihood estima-

tor of a finite dimensional parameter to the case of infinite dimensional parameter

via the method of sieves. They give conditions on the likelihood function and the

parameter space (w'hich is assumed to be a Polish space) so that there exists a sieve

such that the corresponding sieve estimator is consistent. This result is quite gen-

eral but it gives no information about the rate of convergence of the resultant sieve

estimator and moreover, the observations are assumed to be independent and

identically distributed (i.i.d.). The other results of this type (see, e.g., Karr (1987))

assume some additional structure on the likelihood function as well as on the

parameter space.

Here we generalize the ideas of lbragimov & Hasminski (in finite dimensional

parameter estimation) and obtain a large deviation inequality for a sieve estimator

estimating a Hilbert space valued parameter. This inequality suggests a method of

consistent estimation of Hilbert space valued parameters using the sieve estimators

which correspond to the sieves consisting of finite dimensional, compact, convex

sets. This method naturally provides the convergence rates of the resultant estima-

tors and the observations do not have to be i.i.d.. The usefulness of this approach

is demonstrated by applying it to two examples; in the first one, the drift function
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in a linear stochastic differential equation is estimated and in the next, the intensity

function of a nonstationary Poisson process is estimated. In both cases, a detailed

discussion of the convergence rates of our estimators and how they compare with

the other estimators proposed in the literature is given.

The article is arranged in the following manner: the rest of this section is devoted

to the brief explanation of our approach, Section II consists of the basic large devia-

tion inequality, its derivation and the consequences, Section III contains the first

example of the drift function estimation and Section IV contains the Poisson inten-

sity estimation.

Let (X 1,X 2 ,...,X n ) be an n-dimensional random vector (Xis can be general

random objects) with joint distribution Pn O. Assume that, for each n, P' 3

posseses a density, f Z(0 ), w.r.t. a a-finite measure v ' and the unknown parame-

ter 0 is an element of E, a subset of a real, separable, infinite dimensional Hilbert

space H. The goal is to estimate 0 consistently using the observations

(X IX2 .... Xn).

Let (gj), j 1; be an arbitrary but fixed set of independent vectors from H

and Sk, k> 1, be k-dimensional, compact, convex subsets in the subspaces of E)

spanned by (gj),j < k such that:

i) Sk c Sk+l,

ii) u Sk is dense in E and

iii) For every n and k, there exists a (random) point bk n such that

fn(8 kA n Sup f n(0).

That is, (Sk) is a sieve consisting of finite dimensional, compact, convex sets; ,,

is called a sieve estimator (for each n, it is merely a restricted maximum likelihood

estimator).

For Oe e, let Ok denote its projection on Sk. Then, since both Ok and 0kn are

finite dimensional, using the techniques of lbragimov & Hasminski (1981), one can
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obtain an upper bound on the probability:

P'(e(nP31[6, '- 0k 11>  h I zI

where I I. 11 denotes the norm in H, and 3 > 0 and h > 0 are constants.

Now (ii)implies that, for every kn -4 -, the deterministic difference (bias)

I 10k.- e 11 -4 0. Therefore, to estimate 0 consistently, it is enough to estimate Ok,

consistently for some kn -*- (i.e. the error in estimating (k, should tend to zero

as n -- 00). Thus it is sufficient to show the existence of a subsequence k, such

that, for every h > 0 and some 3 > 0, the bound for the probability in (1.1) tends

to zero. In fact, this also means that the rate of convergence of the sieve estima-

tor, bk., is atleast nP if, in addition, we have n1 I 10 k.-E0  -- 0.

In Theorem 2.1 an exponential bound is obtained for the probability in (1.1)

under conditions similar to those of lbragimov & Hasminski (1981, Theorem 5.1,

Ch.l). In Corollary 2.1 sufficient conditions are stated for the existence of a subse-

quence kn such that the sieve estimator Ok. is consistent. In the examples con-

sidered in Sections III & IV the conditions of this corollary are verified.

lI. Let ( X1, Un, Po n } be a family probability spaces indexed by n> I

and Oe E. Points (observations) from Xn will be denoted by X n. Assume that

the parameter space E is a subset of some fixed infinite dimensional separable Hil-

bert space H. Also assume that, for every n there exists a a-finite measuic V -bertZ

such that PO' is absolutely continuous w.r.t. V' for all 0E E. Let fn(X,O) .. , O /

denote the corresponding density.

Definition I (sieve) A sequence {Ski of subsets of E is called a sieve if tu Sk is

a dense set in E and for each n and k the maximum of fn(X , ) over Sk is

attained in Sk .

Definition 2 (sieve estimator) An estimator 6kn(X,) is called a sieve estima-

tor corresponding to the sieve {Sk} if it is a point in Sk such that,

i.
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f'(X',bk') = Sup fP(Xnt).
I E Sk

Our aim is to study the asymptotic behavior of a sieve estimator bk' corresponding

to a given sieve (Sk), k _ 1, of the following type :

i) for each k > 1, S, is a compact, convex set in the span of

(gj ) 1 < j < k ; where (gj } is some fixed set of independent vectors from 0.

ii) Sk c Sk+I and U Sk is dense in E.

For any 0E) , let ok denote its projection in Sk i. e.

110-O k I1= min 110-t II.
t E Sk

Remark 2.1 : Of course, our setup does not guarantee the existence of such a sieve,

we are assuming that we already have such a sieve.

Since Sk is compact and convex, (k always exists and is unique. Further-

more, 1 0- OklI ---) 0 as k -4

Let 0 E E) be the true parameter.

Let (Dnk be kxk nondegenerate normalizing matrices with real elements

such that, 10% 1 -+ 0 as n -* , where !nk I denotes the operator norm

of D'Dk. Note that 'n k can be considered as a linear operator on the span of

{gj ), 1< j5 k in an obvious way. With this understanding !et us define real

valued random functions Z'k (u) with domains U nk as folows

Ut k (= kY1 k Sk - Ok )( (2.1)

and for u E U'k,

Z k (u) = In( Ok + &'nkU )- ( Ok (2.2)

where, for Ge E, l(Xn,8) = in(O) is the loglikelihood function of the data at 0.

Then, since On maximizes In(O) in Sk and Znk(O)= 0 it is easy to verify that

ll(V kk"- ok ) I>_ h I c { sup Z'nk (u)> 0 ). Therefore the fol-
IUu II> h

lowing inequality is true:



-5-

Po'{ (( k(Ok-OD') k >_ h P 0 'l s Z " (U> () l. ,

Under suitable assumptions on the functions Z k(u) the probability on the RHS

above can be bounded.

Let G denote the following class of functions

g E G if and only if,

i) g : [ 0, - ) --* R 1 and there exists x 0 such that g is positive and strictl\

increasing on [ x0 ).

ii) For all N > 0,

J y' exp( -g(y)) dy <
0

Throughout this article C, with or without a subscript, will denote a positike con-

stant indeDendent of n and k; it need not always be the same. Also, Ix I vll

denote the largest integer smaller than x.

Theorem 2.1 Suppose that for each k r N the following conditions hold:

CI) There exist numbers aX= o(k )> k, m =m (k ) ! a and positive constants B t

and p=p(k ) such that for all R > 0,

sup E n . I Znk (u) - Znk (v ) m ! Bnk (1+RP) 1tu-v 10 .
:', . I I I[<_ R ,

... CU~
k

C2) There exists gn k e G such that for some Ti> 0,

E n ()exp( TlZ nk (U) < exp (- g n I lu ll 1 )

for all u r U' k .

Then, for h e [ xo(n,k), )

pon( ii( k)-( k _ (k) I I h} < B (l+h+r) gk, exp ( _ b g n, ,
r=0
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where

i) xo(n ,k ) is a point such that gn k is positive and increasing on /x )(nk k

ii) gkr, g' k (h+r),

iii v = bl(k) - > 0,
x- k + mk

iv) B 1 = B (n,k) = C ( Bk rn D

(24)2k+4( -(-k) rm-cit

1-2 n 2 m

if m > ot and

D =(244) 2k+4 .  1 1
- -(x-k)

1-2 ,n

ifm = a.

v) B 2 = B 2(k) = 2+p
m

From this result a useful corollary can be deduced which gives suflicicnt wnoldi-

tions for the existence of a consistent sieve estimator.

Corollary 2.1 Assume the conditions of Theorem 2.1. Furthermore assume that:

i) The constants m = m (k ), p =p (k ) and ci= ct(k ) in condition CI are constant multi-

pies of k, the multiplying constant being independent of k.

ii) B n < C n Ck kcCk for some C

iii) gnk (x) = n8 k' Lr-a(n,k ) Iv - t(n,k )

where 6, pt and V are fixed positive numbers and t(n ,k ) and a(n k ) are non-

negative constants which may depend on n and k.

iv) For some number s > 0 the following ;;olds:

a) - s-2s > 0



b) a(nns) and t(n'nS) tend:ozeroasn - 0
ns

Then 6n, n  is a consistent estimator of 0 and moreover, for n sufficiently [ar ,,.

n> n o (h).

Pfo { [((")I ( On ,n - 0,n, )1> h } C exp(-C, n 5-s.-s /z

where the constants C and C > 0 depend on 0 alone.

Proofs : First a result from lbragimov & Hasminski (1981) (Theorem 19,

Appendix) is stated. This result gives conditions on a random function -, dcihncd

on R k , so that it will have continuous paths. Furthermore, the conditions givc .I

very useful bound on the expectation of the modulus of continuity of '.

Theorem A.1 Let (:) be a real valued random function defined on F. a

closed set in R k. We shall assume that the process (t) is measurable and separable

Also assume that the following conditions are fulfilled

I) There exist m > a > k such that for all x - F

E I;,:(x ) I' < H1(x )I

l1) Forh E R k such that(x+h) E F,

E I (x + h ) - (x ) I' <_ H (x ) Ih I'

where H (x) is some positive continuous function defined on F.

Then with probability one the realizations of ( t) are continuous functions.

Moreover, if 0O (h, , L) = sup ( I (x )-(y) I ) where the sup is taken ovcr

x,ye F with Lx-yI< h [x 1, ly I< L ,

then

I a-k

Ew(h, ,L) < D(k,ox,m )(Lk sup H(x))' h 1 Inh-1
Lx l<_ L

where the constant D (k ,c.,m ) can be bounded by
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2 2 + .(1 - 1
2 4 -(a-k) 24 )

-((x--)u-k
1-2 4 2m -

if rn > a and if rn = a then the second term in the above product is ( 1-2 -

This bound on D is not explicitly given in Ibragimov & Hasminski (1981) but

can be obtained by carefully going over their proof; the additional factor of lnh-I

in the bound on the modulus of continuity also seems to be necessary when

m = a. The numerical value of this bound in terms of k, m and ac is very impor-

tant since this bound will have to be taken into account while determining the

subsequence kn  which controls the growth of the sets in the sieve. The details

of the derivation of this bound are quite lengthy and so they are omitted, interested

reader can find them in Selukar (1989, Appendix).

Proof of Theorem 2.1: For r=0,1,2 ...... let

Yr n = u U Uk : "h+r < Ilull< h+r+l ). (2.4)

We will show that,

POe[ sup Z'k(u)>- 01_ B (1+h+r)B2gnk.exp(-bgn kr ) (2.5)
u E y,

where b 1, B I & B 2 are as in Theorem A.I. (2.5) will prove the assertion of the

theorem since, from (2.3),

Pon I I((Dnk)-t A n_-Ok) I1> h }<Pon[ SUp Zn k(1)> 0]
Ifu I C h

< PonJ sup Znk(u)>_. 01
r=O EY , '

<h gnkrep(-b gn

0
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which is the assertion of the theorem. Now we proceed to prove (24)

We subdivide the set

7"r= :Uk h+r < Ilul 11 h+r+l into N rceion , each vith

diameter at most 2(l+h+r)6, 6 to be specified later. This subdivision can be

done such that, N < ( 6 )- k Denote the above subdivision of -1,' by,

Yrl, Yr2n'...YrNn and let uj be any fixed point in yrjn . Then,

Npo)l[ sup Znk (U) >_ 01 5 E (,n {Znk (uij) _ -"
u ra -Y," j=1

+ p n ( SUP ( I Zn k(u) - Z"k(V ) 1 (26)Ilu- , 11 < 2 }. I2I6A

(here, 6" = (l+h+r) 6)

The first term on the RHS above can be bounded using condition C2 and the

Chebyshev's inequality as follows

N 1,
SPon{Zk(tJ)> -- < N e 2 exp( -g,. (2.7)

j=lI

Ilu I II E (h+r, 1+h+r] implies that gn'k( 1 I1) 2 gn k(hr) gn k,

Also since, Znk (0) = 0 condition Cl implies that

sup E%( I Znk(u) Im < Bnk (I+RP ) R a. (2.8)
IluII< R

Hence, in view of condition Cl, (2.8) and Theorem A.1 we get that,

Eno 28( 1+h+r); Za k, (l+h+r)) < D [Bnk (l+(I+h+r))Parn

k cx-k

(l+h+r)m [26(l+h+r)] m ln[26(l+h+r)/- t

I a-k

< D [Bnk (2+h+r)p+ 2 , 1- [281 "n ln8 - 1 . k2.9)
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Using (2.9) and the Chebyshev's inequality the second term in the RHS ot 2.6)

can be bounded as follows

Pe7 { sup IZ Ik(u) - Z n (v)l 
k-v< 28 2

1 at-k

_< 4D [B n k (2+h+r)p+2am m ln8-. (2.10)

Thus from (2.6), (2.7) and (2.10) we get,

Po'" sup Z'nk(u) >- 0)
E Y"

1  I a-k
N Ne 2exp(_ gn kr)+4D [B nk(2+h+r)p+2,jm8 m ln8-'. ('-.I1

So far we have not chosen 6. We will choose 8 such that N exp(-gn kr) and

a-k
8 m are of the same order of magnitude. Let

a-k

8 = exp(- m gnkr). Then 8 m = exp(- - g kr); and
((x- k )+ mk (a-k)+mk

since, N 5 8-k,

N exp(-gn,,) 5 8- k exp(-gn k )

a-k
= exp(- (-k+in kr)" (2.12)

From (2.11) and (2.12) we get,

pn"[ Sup Znk(u)2- 01

5 exp(- a-k ' r) [e 2 + 4D[B"k (2+h+r)p+2o]" g'kr].(ox- k )+ mk

Hence

Pnf[ Sup Znk(u) 01< Bl(l+h+r) 2exp(- bgnkr)gn
U e Y



which completes the proof.

Proof of Corollary 2.1: Let g, (x) = gln(xu)" then

gn(x) = C n'- s Ix-a(n) Iv-t(n) (2.13)

where

a(n) = a(n,[nS]) and t(n) = t(n,[nS]). It is easy to check that gn(.r) is posi-

tive and increasing on [xo(n),ee) where

xo(n) = a(n)+ I n--s-s)

C[ns]

In view of assumption (iv) (a) and (b),

5- ts-s > 6-pts-2s > 0 and a(n) and t(n) are such that

a(n) -* 0 and t (n O.
[n s]

Therefore xo(n) --> 0 as n -- o. Hence for every h > 0, there exists no(h)

such that for all n > no(h), xo(n) < h. Then the following inequality is a

consequence of Theorem 2.1.

Pn I I ( " ,FI ( 6, - 0,n') II> h }

< B, (l+h+r)B2exp(-bign(h+r)) (2.14)
r=O

where because of the assumptions (i) & (ii) of the Corollary,

b i = b 1(k) = k C C
ot-k +mk k [ns]

B p+2cc C,

m

B= C (Bnk) m D(k,r,m) C (24)ckkcnc

= C ( 2 4 )c(n'l nC
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and Ig,(h+r) 1< nC kC (h+r)C. (In all of the above expressions the constant

C denotes a positive number independent of n but it could be different in each of

them.)

This means that the expression in (2.14) can be written as

po e ( -( Dn n' F 1 n, - O, ) II> h j

5 Cnc( 2 4 )C[n' l  (+h+r)B2exp(- C g, (h+r))
r=0 [ne]

_ ( C nC (24 Cn']exp( C g(h)) )
2[ns]

B C
x (1+h+r)B2 exp( C- g,(h+r)) (2.15)

r~o [nS]

(since g,(h+r) > gn (h) ).

-For large n the first factor in (2.15) can be made arbitrarily small, in particular

smaller than 1. To see this, note that for large enough n

h t(n) 1
a(n) < - and - .< -

2 [ns] 2

then

- (h C - (C n s Ih-a(n) -t(n)[nS] g n h  [ns]

>t C n (8- s-s) h v- I

2

Therefore

C
C nc (24 )C n')e xp  (  g,(h)2[ns]

SCnc (24)c[n'lexp(-C n(8-4s-s)h v+")
2
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= C nC(24)C[n']exp(-C n(8-gs-Ss)hv).

However since h > 0 and 6-p.s-s > s the RHS above tends to zero.

Thus for large n,

p { II ( (D. ) - (6njn - On, ) II> h }

< (1+h+r) Bexp(- Cg(h+r))
r=O [nS]

exp(---n(8- s)hv) (1+h+r)B2exp( C gn(h+r))
2 r= 2[ns]

< exp(---n(8 ss)hv)
2

x (1+h+r) 2exp( C n(8gs-s)(h+r)v)
r=0 2[ns]

.. because for large n, g (h + r) > C n( 8 ' Ls- s)(h+r)v.)
[ns]

!5 exp(--Ln lss)hV). (2.16)
2

The last step follows because, using the Dominated convergence theorem it is easy

to see that the second factor in the product above tends to zero as n - 4. The

assertion in (2.16) essentially proves the Corollary since, 1( D"n  ) 1 F I 1 0 as

n --4 - implies that

IO,' - 0, I -4 0 as n -+

and then we only need to observe that the deterministic difference

I - On, I always -4 0 as n -- oo

III. Drift function estimation in linear SDE:

Consider the following model:
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dX1 = 0t Xtdt + dWt, Xo= Xo, 0! t< 1; (3.1)

where (W) is the standard Weiner process and the initial value X0 is a zero

mean Gaussian random variable with varience equal to ao 2 . Furthermore, X 0 is

assumed to be independent of (Wt).

The goal is to estimate (0t), an unknown deterministic function, using a

sample of n independent trajectories of (xt).

We assume that OE L 2([O, 1],dt), that is, the parameter space

E= L 2([Ol],dt). At this point we make an assumption that a 0
2> 0. This

assumption is not very essential except that, in the presence of this assumption the

consistency can be obtained in L 2([O,1,dt) and the statements of the results are

simpler whereas if this assumption is violated i.e. if Xo= 0 a.s. , then the con-

sistency is obtained in L 2([Ol1],O 2(t)dt) where y0
2(t) = E (x, 2); (see Nguyen

& Pham (1982) Remark pp 609).

The above problem was first discussed in a paper by Nguyen and Pham

(1982). They proposed a sieve estimator and showed its weak mean square con-

sistency; no regularity assumptions on 0 were made. However, the rate of conver-

gence of this estimator was not discussed. Later Kutoyants (1984) proposed a ker-

nel estimator and proved its weak pointwise consistency under some mild

differentiability assumptions on 0. He also discusses the rate of convergence of

this estimator. Here we propose a sieve estimator which is based on the method

suggested in the last section. It turns out that our estimator is a smoothed version

of the estimator proposed by Nguyen & Pham. We will see that unless some kind

of regularity assumption on 0 is made the method in Section II does not yield the

consistency of the proposed estimator, however, under mild regularity conditions

on 0 this estimator is shown to be mean square consistent as well as uniform norm

consistent; the rate of convergence being dependent upon the amount of regularity

assumed. We first define the necessary notation, state our results and then com-

pare them with the results of Nguyen & Pham and Kutoyants. The proofs are
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given at the end of the section.

It is easy to verify that (3.1) has a unique strong solution (x t ) given by

t I t

xt = x° exp(f 0udu)+ f exp(f 0udu)dWs. (3.2)
o 0 s

Note that (x,) is a continuous Gaussian process with the mean fuction identically

equal to zero, and if G(a2(t) = Ext 2 then it can be shown that

t I I

a'o 2(t) = Oo2 exp(2f 0,du)+ f exp(2f 0,,du)ds.
0 0

Obviously u0
2(t) is a continuous function on [0,1]. Let

M =  sup Y02(t) and m o = inf ae 2(t);
0< t!5 1 045 t< l

ther, since [0,11 is compact and ae2(t) continuous. Mo< ' Also, io> 0

since Y0
2> 0. This means that, for f r E,

mellf I12< Ilf 112(< MoIlf 112 (3.3)

1 1

where If 112)= f f 2  2(t)dt and If 112= f f 2dt.
0 0

For 0(E, let PE denote the measure induced by the paths of (x1 ) on

(C,C) where C is the space of continuous functions on [0,1] endowed with

the supremum norm topology and C is the Borel a-field of subsets of C (that is,

it is generated by the open sets in C ). Then it is well known that (see, for exam -

ple, Liptser and Shiryayev (1977), vol. 1, Theorem 7.19, pp 277) P9 and P0 are

mutually absolutely continuous (Po denoting the measure P0 when 0- 0) and,

dP . 1 1
- M(o) = exp(f 61(odct - - f '2 ot2 dt) (3.4)
dP 0  0 2o

where co= (cot)eC.
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Suppose 0 = (0,), a point in 19, is the true parameter.

Our aim is to estimate 0, using a sample of n independent trajectories of

(x,).

Let C' be the n-fold product of C, C n the n-fold product of C and

Pe' the n-fold product of P0. Also, W' will denote a typical point in C'.

With this notation, the family of probability spaces under consideration can be

described as the triplet, { C n , C,, Pen , 0(- ) .

The sieve Sk to be used is defined as follows:

Let { fj } be an arbitrary but fixed complete orthonormal system (CONS) in

E = L 2([O,1I,dt) and for k > 1,

k k
Sk = {[kO0r = Of, ; 0.2< k 2q }; (3.5)

j=1 j=I

q > 0 will be determined later. Let k = kn (cOn ) be the sieve estimator

cc responding to this sieve. Now we are in position to state the main result of this

section, the large deviation inequality for bkn . However, we first have to define

the domain of applicability of this result.

For 0 e E, let Pk0 and Qk be the projections of 0 on the linear span of

1f 1< j< k ) and Sk respectively, (fj} being the CONS used in defining the sieve
1

Sk. ( clearly, for large k, k> K0, Pk0 =0 k) For0< e< - let
2

9E = {OE):n - E 110- PnO 112 - 0 as n - }. (3.6)

That is, 0 r 9e if and only if

ni- C 0j2 -+ 0 as n - o (3.7)

where O's are the Fourier coefficients of 0 w.r.t. ( fj



- 17-

From the definition it is easy to see that,

e I < c :  9e, C 92; (3.8)

that is, smaller c implies higher "smoothness". It is clear that the type of functions

which belong to E) depends on the CONS used in defining the sieve Sk and for

an arbitrary CONS it is difficult to ascertain whether a given function is a member

of 9E or not. However, for some special choices of CONSs it is possible to iden-

tify large classes of functions which belong to %. One such choice of CONS

[f j ) is illustrated below:

Set f 1l I andforj > 2,let

fj (t)= ",2cos(tjt) for even j's and

fj (t) = 2sin [n (j+1)t] for odd j's; t e [0,1]. (3.9)

For m > 0 and 0 < a :< 1 let 9 em,O be the class of m-times differentiable

functions with m-th derivative Lipschitz continuous of order ax. More precisely,

m.ct= {0 z 8: 0 is m times continuously differentiable

with m-th derivative Lipschitz continuous of order cx.

Furthermore, for 0 < j < m,

OWi)(0) = 0(j)(1) where, 0' j ) (t) = d 0(t) (3.10)
dtj

If the CONS in (3.9) is used in defining the sieve Sk then it can be shown that (see

Corollary 3.5),

ma c tE9 when e > (3.11)
1 +2(m + ()

Theorem 3.1 Assume that the true parameter 0 belongs to 86 for some E.

0 <E<1. Choose >0 and q > 0 such thato< 5-.
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b= - 23 - c - 2eq > E> 0.

Then, for all n sufficiently large and h > 0

Pn0 { n13 II n- 0 II > h ) < exp ( - C nb h 2 )

where C > 0, depends on 0 alone.

Now the Borel-Cantelli lemma and the above result give us the next theorem.

I
Theorem 3.2 Assume that 0 E e) for some E, 0 < E < -. Choose P > 0

2

and q > 0 such that

I - 20 - 2F - 2cq > 0. Then,

n[ IIO n -11 0 n-* 0 a.s. as n -- o.

For the following results it is assumed that the CONS { f1 ) used in defining the

sieve Sk is the one given in (3.9). Then the next result is just a restatement of

the last theorem using the fact given in (3.11).

1
Theorem 3.3 Let 0 E emr c, m + c > w Then for every P .

1
(m+a)- 

2

P < 2(m+ot),+ there exist £ > 0 and q > 0 (which depend on P) such that,

n'3 101bne - 0 10 -+ 0 a.s. as n -*

I
It is well known that if 0 e E)ma and m + a > -, the Fourier series of 0

converges absolutely and uniformly. Then a few additional computations give us

the following relation
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su I / () - _ () I n 2 n 0,1 - 0 II 3.1 2)

(for n > n o (0)).

Therefore, in order to show the uniform norm consistency of 0 " at the rate

P , L

n5 , it suffices to obtain L 2 -consistency at the rate n 2 The next result gives

sufficient conditions for this to happen (Roughly speaking, we put 3 + in place

of f0 in Theorem 3.3 )

Theorem 3.4 Let 0e E ,.a. m+ c> 1. Then for every < 2(m+-a)-+

there exist E > 0 and q > 0 (which depend on P) such that,

n sup J 0,' t)- 0(t) j --+ 0 a.s., as n -4
0 t5 1

The next result is an obvious consequence of the above when 0 is assumed to

be infinitely differentiable, that is if, 0 E Emfa for every m.

Corollary 3.4 Let 0 G ea, for every in,' then,

1
for every 0 < 1 there exist e > 0 and q > 0 such that

2

n sup I 0,e' (t) - 0(t) I - 0 a.s., as n -

o IS 1

Comparion of results: Let (fj },1> lbe an arbitrary but fixed CONS and Ok n be

the sieve estimator corresponding to the sieve (Skk> 1); Sk bcing the k -

dimensional subspaces spanned by fi, 1< j k. Without assuming any regularity

on 0, Nguyen & Pham (1982) proved that 0k, converges to 0 in probability in L
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norm, when k.- slower than n. The rate of covergence of 0k, ho.%evcr.

was not discussed. We were not able to obtain a result of this t,,pe using the

method in Section II but, in view of Theorems 3.2 - 3.3 it is clear that in the pres-

ence of mild regularity on 0 this method works quite well. Next let us consider the

consistency result of Kutoyants.

Assume that 0E Ema, for some m and ot such that rn+x > 0.

Suppose (xItt....x nI) are n i.i.d. copies of (x,),O _- t<_ 1. For] = l,...n and

Zn = n 2(m+a) +-I define

Yn, () = (1J) - I if IxtJ I> zn

Z n-1  otherwise.

Then the kernel estimator of Kutoyants, , (t) say, is defined by

On _ I KC-t) Yj ( T) dX ITn a. i1 0 a.

where an = n 2(.2+ia)+1 and K (.) is some bounded kernel. The

weak pointwise consistency of 0 , (t) is proved by showing that. for every c> 0

and d< 1,

(m+cx)

lim sup E (n 4(m+ a)+2 16 (t) _ O1 12< .
n --.o. I5 d

(M + (X)
From the above it is clear that for every < 4(+)2 , there exists a

choice of zn and an such that,

no 16, (t)-01 I -4 0 as n -- ,0 in probability.

Let us compare this result with Theorem 3.4. Clearly, Kutoyants's result is more

widely applicable than Theorem 3.4; it is applicable for 0 e ra m+X > 0

whereas for Theorem 3.4 we require that m+cx > 1. However, the possible rate

of convergence of Okn exceeds the possiole rate of convergence of the kernel
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estimator 6, (t) when it is assumed that e E em,, ,m+(x > 2. It is intere.siine

to note that even if 9 is assumed to be very smooth i.e. if 0 E , for every rn,

the largest possible (limiting) value of P for On (t) is -1 where as for k nit is

(Corollary 3.4). It should also be emphasized that the convergence in Theorem

3.4 is in the uniform norm.

Proofs: First we prove Theorem 3.1. In view of (3.3) the statement ul the

theorem is equivalent to the statement with II. II norm replaced by II. 11() norm.

This equivalent statement is proved by verifying the conditions of Corollary 2.1.

The verification is done with the help of several lemmas The first to lemmas are

technical, Lemma 3.1 bounds the higher moments of the L 2 norm ot a square

integrable Gaussian process in terms of its second moment and Lemma 3.2 gives

bounds on its moment generating function. Both these results are important in

their own right and their proofs must be available in the literature but since the

auther was unable to find the original sources brief proofs are sketched.

Lemma 3.1 Let (Yt),O < t< T be a zero mean Gaussian process such thZt

T

E f Y'2 dt <,,. (3 13)
0

Then, for all k . 1,

T k T k

E (f Y,2 dt ) < kk [E Y y 2 dt)/
0 0

Proof Let R (t,s) = E Y1 YS and let R be the corresponding covariance

operator defined on L 2 [0,T ]. The condition (3.13) implies that

(Y,) e L 2 [0,T ] a.s. and that R is a seif adjoint, non-negative definite, trace class

operator. In fact,

T T

tr(R ) := Trace (R ) = f R (t,t) dt = E f Y1
2 d. (3. 4)

0 0
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Since (Y,) E L2 [0,T] a.s., we can expand it in terms of any fixed complete

orthonormal system (CONS) in L 2 [0,T]. If the CONS chosen is the one consist-

ing of the eigenfunctions of the covariance operator R , the resulting expansion is

known as the Karhunen-Loeve expansion. Let { fj ) be the system of eigenfunc-

tions of R and .'s be the corresponding eigenvalues then the Karhunen-Loe.c

expansion of (Y,) can be written as

y,= T XjXfj() a.s. (3.15)
j=1

where the coefficients (Xj) are i.i.d. N(0,1) random variables.

From the above the following identities are immediate

T

f Y ,'dt =  X j2 and (3.16)
0j=l

T

E f y 2 d Xj = tr(R). (3.17)
0 j=I

Therefore,

T k k

E ( Y 2 d) = E ( ?jXj X 2 )

0 j=1

k - k

1 1 j=l

Applying Jensen's inequality for the quantity in the square bracket we get

T k k-I

E f y 2 dt) (Xj E( X XX1
2 k)

o 1 j=1

k
=~Xj) EX IN

since Xj's are i.i.d.. Moreover because X l is N(0,1), using Stirling's approxima-

tion (see Rao (1973) pp 59),
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2 k ( 2 k ) k
E X 2' k! k

So finally we have

T k k

E (f Y' 2 dt) < kk ( ?j)
0 1

which completes the proof ( see (3.17)).

Lemma 3.2 Assume that the Gaussian process (Y,) is as in Lemma 3.1 and R is

the corresponding covariance operator, also, let I IR I I denote the operator norm of R

then,

i) ForO< c< (2 1IR I) - ,

T
E exp( ) f y ' 2 dt !5 exp( o tr (R ) (3.18)

0f 1d 1-2a IIR II

If 0 < (x < ( 2 tr (R ) ) the following weaker version of the above inequality

.can be useful.

T

E exp (x d ) < exp ( a tr(R) (3.19)
1-2cx tr(R)

ii)

T
2 dt - tr (R)

E exp( -J Yt 2 d)< exp ( -)
0 1+211R I

< exp ( tr(R (3.20)
I+ 2tr(R)

T

Note that tr(R ) f EY, 2 d.
0

Proof From (3.15)

T

f y' 2 di- x 2

0 j=l
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where Vs are eigenvalues of R and Xj's are i.i.d. N (0,1). Note that if X is a
II

N(0,1) variable then, for P < E exp (5-X2) =(-2p) 2. Therefore,

using the fact that I IR I1 I for alljand a < ( 2 IIR II- ve gct

I

E exp ( oX3 Xj2) - (1-2a Xj) 2

Hence

T 1
E exp (c f Yt 2 dt)= f (1-2ccX j)-

0 j=1

= exp In I --(x"
21

exp7 ln(lI+))

2 2 1 1-2a i

_< exp( 1-2ccX.

since In (1+x) < x forx > 0.

So

T 00

E exp( af Yt 2 dt ) < exp(aX 1 2 o,
0 1 1 ak

The conclusions in (i) follow because of the following observation

III
I-2cc ki I-2(x IHR II I-2(x tr (R

Proof of (ii) is also almost identical.

Now, following the notation in Section II, let us define random functions

Zk n (u) with domains Uk' as follows
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Forn 1, k > I and 0 let

Uk' = np ( Sk-_k ) (3.21)

and

Zkn(u) = ln(Ok+n- u)- ln(k) (3.22)

where Ok is the projection of 0 in Sk and In(0) is the loglikelihood function at 0

when the sample size is n.

From (3.4) and the fact that Pn o is a product measure the following expres-

sion for the loglikelihood function is obtained

In(0,(,) = In - (un)
dp n 0

1 1

= I f Ot co't dco' t - - O 0f 2 (COit) 2 dt. (3.23)
i=1 0 20

The next lemma verifies the first condition of Corollary 2.1.

Lemma 3.3 For u E Uk n ,

E IZk(u) - Zkn (v) 12k Bk n Ilu-v IIE2k

where

Bk n = n2k(1-P)+1 k
3k 110 1 102k (16M() 2k

Proof From (3.23),

Zk n (u) - Zk n (v) = I( (+n-P u) - l (Ok+n - v)
n

n If (u, - v,) co', dcod,
i=1 0

I

f I (k+nU) 2 - k+n-0 v)t 2 ] (it) 2 dt2 0

c k tHence, using the elementary inequality, ( y.a i ) <_ m' ( . aij ). for
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positive numbers a i repeatedly, and the fact that (cot) are i.i.d., we can bound

E I Zkn (u) - Zk n (v) 12k by the following expression:

1 2k
n 22k n2k( t -IP) E (f (u, - v,) cot dco, )

0

l 2k
22

+n n 2k E (f [ (_k+n - D U)t 2 -(_k+ - n )1 2 I (Cot)2 dt ) (3.24)
0

We will bound each term in (3.24) separately. First consider

1 2k

E( f (Ut-V,)cotdot ) •
0

Note that, under PO, (c,) satisfies the following SDE

d ot = 0, cot dt + dW t (co) , co = XO

where W, (co) is the standard Wiener process under PO, and X0 is a N(O,aO2)

r.v. independent of W, (CO). Therefore

I 1

f (ut - v,) ao, dcot = f (u, - vt) % C02t dt
0 0

1
+ f (ut - vt) 0)t dWt(o).

0

1 2k

Hence E ( f (u t - vt) ol dw, ) is bounded by
0

1 2k

2 2k (E ( f (Ut - vt) 0t CO2 t dt)
0

1 2k

+ E (f (u t - v,) co, dW, (c)) 1. (3.25)
0

The first term in the bracket above can be bounded by the repeated application of
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Cauchy-Schwartz inequality and finally, of Lemma 3.1 by

{ k 21 1 ju -V 11() 4 1 , 11 ()40k  } 2

Thus,

1 2k

E (f (u t - v) 0t c02t dt ) < k k IIu -vI1o 2k 110 1 !2k. (3.26)
0

1 2k

Next consider E (f (u t - vt ) co dWr (co)) (the second term in (3.25)); it
0

can be bounded by

1 k

(8k )2" E (f (u t - v,) 2 WO2t dt )
0

The above bound follows from the Burkholder - Davis - Gundy (BDG) inequality

stated here for the reader's convenience (see Dellacherie and Meyer (1982), pp 287

where a general inequality is given).

BDG inequality Let (M), 0<5 t5 T be a square integrable martingale with

squared variation process < M> t then,

E sup IMtl 2P 5 (8p) 2 PE< M> TP
0! tS T

for all p > 1. Therefore, using Lemma 3.1, we get

1 2k

E (f (u t - vt ) cot dW, (c) <- 8 2 k 3k lu-v I162k (3.27)
0

Hence, in view of (3.25), (3.26) and (3.27), the first term in (3.24) can be bounded

by

Ilu-v 11i2k n2k( 1-P3)+t k 3k 8 4k 10112k.

The second term in (3.24) can be bounded in the same fashion and then combining

these two bounds the lemma follows.
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The second condition of Corollary 2.1 is verified in Lemma 3.6, the following two

lemmas are preparatory.

Lemma 3.4
1 1

0 0

4

0 0

Proof Recall that, under P9 the paths (ot) satisfy the following SDE:

dct= 01 cot dt + dW1 (W) , O = X0.

Hence, writing 0, = (O- -Ok )t+(9k )I we get

4= f U0 w-t dod t(Q+-n-oUt(O-kk)tCot dt 8 1oU t 2o 2 dt "

Moreover,

EO (exp(--- ucotdWt(o) - 8n u-25o 2dt)- =

0 8 0

dP G+ --.. ,
2since the expression inside the bracket is in fact (Co) i.e. it is a density.dPo

Therefore, applying the Cauchy- Schwartz inequality,

Eexp(--n- fu, 0)d cot- _L [(09c+n-O),2-(9k)t2C, tt d )

0 0
21 1

-2Ex(-n 2 3  _3 12

x (Eexp(-- f ut22dt+ 2 0uf(-k) t t 2dt ))
8
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-.
(Eexp(-- [ 

2-oo .

The conclusion of the lemma follows if we apply the Cauchy-Schwartz inequality

again.

Lemma 3.5 For u e U' k and k large so that

1 - 2 1 10 - Ok 11 2 > 0,

1-n I Inu-2(00k)11 2
Eexp(1IZ'k(u)) <_ exp( -n II u-20 k)1022

4 16 1+ 1n -Au -2(0- O~k)110 2

n 10-_0k 1102

4( 1- 2 II0- 0k 1102)

Proof Note that Zk n can be written as

I ~ 1

Zk (u) = Fn- f u'tdo't--J fO([Qk+n-5uIt 2-[Ok]t2)(wit) 2dt
i= 1 0 0

where (toi,),O!_ t! 1, i = 1, 2 . n are i.i.d processes. From this independence

and Lemma 3.4 we get,

E exp(1LZ "k (u))4

!5 (Eexp(-- [n-Out-2(0-ek )t120)12 dt) (E exp (f' (0-ek )t2(01 'dt))

40 0

To obtain the lemma we now apply Lemma 3.2 (ii) to the first term and (i) to the

last term of the product in the RHS above.

Let us bound the expression in the last lemma by a slightly simpler expres-

sion.
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First note that since I ll -I-lly 1101 _  Ibc-y Ile ,

-n IInf-Pt-2(6- -) 110 2 -n In- 3 11u 11- 2 110- k 11o 12

<7

16 1+ In-Piu-2(0-k) 110 2 -  16 1+ lIn-u_2(0- _k) ll2

Furthermore since u E Unk = np(Sk-Qk),

I lit H) < 2 M kq n P

and, forlarge k,k> k o,

1+ IIn- PU-2(0- 0 k) 1Il2 < Cc k 2q

(since 110- 0 k 112 -4 0 as k -- o). Therefore,

-n I In u-2(0-0-k)I i 2  -nC I1.3.28)

16 1+ IIn -Pu-2(0-6k)l1o 2  k 2 q

Also for large k, 1 - 2 110 - 0 k 11 2 > - hence
2

n 116- _0k 11o 2 2
< 2n 1I0-Ok 110 (3.29)1 - 2 1103-0k 11o

Therefore, from. (3.28), (3.29) and Lemma 3.5 we get,

E exp (-Z'kW) 5 exp k ( 1 lu 10 )) (3.30)
4

where

gn(x) = - , In- 3x -2110--0k 110 12 - 2n 110 - k 11o2.

k 2q

The conclusion in (3.30) is stated as the next lemma (which verifies the second

condition of Corollary 2.1)

Lemma 3.6 For u 6 Unk and k > k 0

4 ,n(U)) < exp(gnk0lit 110))

- ... ,.,., ,,. i I I II I I4



- 31 -

where

gn,() =-nCO 12
-nC I n - x - 2 II0-Ok I 1C 1I - 2n 10- Ok 1
k 2q

It is easy to check the remaining conditions of Corollary 2.1. Note that, here,

1) m = a = 2k,p=O

2) Bn k -< n2k(1-0)+1 kk( 3+2q) Co2k and

3) gnk(x) = Con 8k - ' Ix-a(n,k) I'- t(n,k).

where

8 = 1-23, = 2q, v = 2,

a(n,k) = 2n 1 II0 -Qk It and

t(n,k) = 2n 110 -_k 11)2.

Also recall that, by assumption, Oe E and 1-2p3-2c-2eq > 0. Therefore if

we take s=E> 0 then

8-pts-2s = 1-213-2s-2Eq > 0.

Now let us see if we can show

i) a(n,[n'j) = 2n 3 110-0n. 1  --- 0 and

ii) t(n,[n']) = 4n 1'- II0-ane 1lo2 - 0as n

[n']

(ii) is easy to see because 0e eE implies that

n' - E1l0-Pn,8112 -- 0

which implies that

n I- E 1 0 ,- 112  
- 0;

which is (ii). It also shows (i) since 1-e > 213. This concludes the proof of

Theorem 3.1.

Now we show that Theorems 3.2 - 3.5 follow from Theorem 3.1.
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Proof of Theorem 3.2 Obvious from Theorem3.1, the Borel-Cantclli lemma and

the following:

n II 0, 0 n P II 0 n n 0 I I + n P10 0,e II.

Before starting the proof of Theorem 3.3 let us review some standard facts from

Fourier theory. These are stated as propositions. From now on, {fj } will

always denote the CONS defined in (3.9) i.e. the one with the trigonometric func-

tions. Also recall that, for m _> 0 and 0 < !5 1, Emao is the space of m-

times continuously differentiable functions with m -th derivative Lipschitz continu-

ous of order a.

Proposition 3.1 Let 0 E OmnQ. Then there exists M = M (m ,ox,0) such that

I

I10- Pn 0 112 f [ - pn ) ]2 dt <- M n-2 ( m+cx)

0

The above inequality is a simple consequence of a result called Jackson's ine-

quality [see Zygmund (1949), Theorem 13.6, pp 115, vol I.] and the fact that P, 0

is the projection of 0 on the linear span of { fj }, 1 < j < n;

Corollary 3.5

I

em,,.ac E), for all rr->
I+ 2(m +oa)

Proof We have to show that 0 E Ema, £E > implies that
1+2(m+ i et

n - E 110- Pn E0 112 -.- 0 as n -

From the last proposition,
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n1-E II 0 - P nO 112< M nl-E-2E(m + a )

The RHS above tends to zero if l-E-2E(m+oc) < 0 i.e. if c > 11+ 2(mn + (x)

which is the required conclusion.

The next proposition shows that the Fourier coefficients of functions in 9 ,

enjoy nice convergence properties (see pp 240, Zygmund (1949) vol II and

Theorem 5, pp7l, vol I).

Proposition 3.2

1
i) If O E Oma, m + a > I then

s tOM I< -'2, 10 1< 00
Os_ 1 1

where OJ's are the Fourier coefficients of 0.

ii) 0 E ErM,a, implies that

10J I - (jm -a)

Proof of Theorem 3.3 Follows from Theoerem 3.2 and Corollary 3.5
__1

(m+a)- 2
(because for every <we can find an e and q> 0 such that

em.aC e and 1-213-2e-2Eq> 0).

Proof of Theorem 3.4 : This result follows easily from Theorem 3.2, Corollary 3.5

and Proposition 3.2. To see this first note that

j1 nne+
sup 10,,, (t) -0, 1< ,i { 2 10 ,., 10i.

0 5 1!5 1 J = l ni + I

Hence the result is proved if we show that

a) nP E I0-0O I -- 0 and
j=I
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b) n 8 -* Oasn .

First let us show (a). Using the Cauchy-Schwartz inequality,

no n -In 21 n_ 12

j=1 j=1

Therefore (a) is proved if we show that

n II 0-EII -* 0 a.s. as n -- o.

But this follows from Theorem 3.2 because for 3< (M+c) - we can lind an e
2(m+ x)+ I

and q such that E),,ac@ and 1-2( P+ -)-2E-2q> 0. Now consider (b).

From Proposition 3.2 (ii), there exists a C such that for large n

n'+1 nE+1

Hence

no 1 i _ C n 1 (nE) 1- m ' -a < C nP+E( 1-m- a )

nc1+ I

The RHS above tends to zero if 3+E(1-m-X) < 0. Again, for

(m+c)- 1 one can find an E such that EmOcc e and 3+E(1-m-(x) < 0;
2(m + x)+ 1

and thus (b) is proved.

IV Intensity estimation of Poisson process:

Let (Nt), 0 t5 1 be a Poisson process with intensity function

I

0= (t), 0< t< 1; i.e., M, = Nt - f 0, ds is a square integrable martingaic
0

with square variation process

I

< M > =f Os ds. (4.1)
0
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The deterministic function 0 is assumed to be positive, bounded and bounded ara

from zero. The aim is to estimate 0 using a sample of n independent trajectories

of (N1 ), 0< t < 1. This problem is treated as one of the examples in a paper hb

A.F. Karr (1987). There he proposes a sieve estima!or (Histogram sieve estimator)

which is shown to be strongly consistent in the LI norm. The rate of convergence

of this estimator is not discussed. As in the case of Section III, for this example.

the procedure suggested in Section II yields sieve estimators possessing good con-

sistency properties. A detailed discussion of the rate of convergence of these esti-

mators is given after developing the necessary notation. All the proofs are given at

the end.

Let D = D [0, 1] be the space of right continuous, left limit functions on

[0, 1], endowed with the Skorokhod topology; D will denote the o-field of Borel

sets in D.

Let

f= feL 2 ([0, 1,ddt):f > 0, sup f(t)< -, and
0 5 Is 1

inf f(t)> 0 }. (4.2)
0 t! I

E will serve as the parameter space for our problem.

Suppose, for 0 r E, PO is the measure induced on (D, D ) by the paths

of a Poisson process with intensity 0; then if 0, . E 8, it is well-known that (see

Karr (1987), pp 475), Po and P,, are mutually absolutely continuous and, for

ot)GD,
co c- D

d (o) = exp(f (., - , ) dt + f In( - ) dO), ). (4.3)
dP. 0 0 9 t

fn what follows, (D', D ) will denote the n-fold product of (D, D ), cOn a

typical point in D n and P" o the n-fold product of P0.
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Followingy the method from Sec II, a sieve estimator ,k is proposed to esti-

mate 0. The loglikelihood function, from (4.3), can be written as,

I (0,co) = In dp (0")
dP 1n

1 1

nf ( 1 0:j) dt + I f ln(0,)do,. (4.4)

0 i=1 0

( I± is taken to be identically equal to 1 and ol are components of con; under Pn0

they are i.i.d. Poisson processes with intensity 0.)

Two different types of sieves Sk are used.

I) Fork_ 1 andq> 0let

k

Sk = { 0e • 0= j, k- q < 0t  kq for all t }(4.5)
j= I

where for 1< j< k, fj () = I t (t).

k k

(This sieve is some times referred to as the Histogram sieve.)

11)

k
Sk = { 0e :0= f fj, k -q < 0 kq for all t }

j=1

where for j > 1, fj's are defined as follows

Takefl I and for j_> 2

fj (t) = "42"cos (n jt) for even j's and

= ',/2"sin [t (j+l) t] for odd j's. (4.6)

The results in this section are almost identical to the results in the last section.

To obtain consistency results, using the method from Section 11. we need some

additional "smoothness" assumptions on the Fourier coeficients of 0. Indeed, in

order for the the main consistency result, Theorem 4.1, of this section to .,e appli-

cable, we require that 0 e We.q for some e > 0 and q > 0 such that
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1-2Eq-2s > 0, the class W ,q being defined as follows:

Wq = { 0 cE) : nl+2Eq - EIIPn - II --- 0 } (4.7)

where Pm e is the projection of 0 on the span of (fj, l< j< m ), fj 's are as in

(2.4) or (2.5) and 11. II denotes the L 2-norm.

The class W ,q corresponds to the class eE of the last section and in this

case also if the fj's used in defining W .q are the trigonometric functions given

in (4.6), it is easy to show that,

Om1a C WEq for e(l+(m+c)-2q) > 1. (4.8)

Recall that Em,a is the class of m -times continuously differentiable functions with

m -th derivative Lipschitz continuous of order (X.

We state the results of this section without any further discussion, the rela-

tions among different results here being exactly identical to the relations among the

corresponding results in the last section.

For the next two results 6k n can correspond to either of the two sieves

given in (4.5) and (4.6).

Theorem 4.1 Assume that the true parameter 0 belongs to W E.q for some E > 0.

andq > 0 where 1-2e-2eq > 0. Choose f _ 0 such that

b = 1 - 20 - e - 2eq > e> 0.

Then, for all n sufficiently large and h > 0,

P" 0  nn II n ,P - Q,, I > h ) exp(- C nb h 2

where C > 0 , depends on 0 alone.

Theorem 4.2 Assume that 0 e W Eq for some e, and q > 0 where

1-2e-2eq > 0. Choose 0 > 0 such that
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I - 23 - £ - 2Eq > E > 0.

Then.

n P II 0n- 0 11 -- 0 a.s. as n -- o.

For the following results it is assumed that the CONS (fj I used in dcining the

sieve Sk is the one given in (4.6) (i.e. consisting of trigonometric functions).

Theorem 4.3 Let 6 Em, a , m + c> 1. Then, forevery 3< (m+o-I there

2(m + o)+2I

exist c > O and q > 0 such that

nP I- n -0 11 * 0 a.s. as n - 4 .

(mn+ cx)-2_Theorem 4.4 Let Or 1m, a, m+ca> 2. Then, for every 03< (m+ , there

exist S > O and q > 0 such that

n Psup I an (t)- 0(t) I -* 0 a.s. as n
1D<_t< I

Corollary 4.1 Let 0 E rem.a, for every m ; then,
1

for every f < -1 there exist e > 0 and q > 0 such that
2

n sup On (t)- (t) I -4 0 a.s., as n - o.
05 t! 1

Proof of Theorem 4.1 : This theorem will be proved using Corollary 2.1. The con-

ditions of this corollary are verified using several lemmas. The lirst lemma,

Lemma 4.1, is a simple result from point process theory. It can be easily proved

first by verifying it for simple functions and then extending it to more general
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functions using the standard techniques.

Lemma 4.1 Suppose ( N, ) , 0 < t < 1 is a Poisson process with bounded inten-

sity ( 9t ) then, for all f, bounded and deterministic,

1 I

E exp(f fs dV )= exp(- f ( 1- exp(fs) ) Os ds).
0 0

Let us recall the definition of the sieve Sk. For k > 1 and q > 0,

k
Sk = {Oe:0= Z Ojfj, k-q < 0(t) < kq , tG[0,11

j= I

where (f j }, 1 < j < k; is a set of independent vectors given in either (4.5) or

in (4.6).

For 0 e e, let Qk denote its projection in Sk. Recall from (4.4) that, the

loglikelihood function

1 1

(0, Cf) = n f (1 - 0,) dt + f J In (0,) dco,' (4.9)
0 i=1 0

where under Pn , ( COt ), 0 < t < 1 are i.i.d. Poisson processes with common

intensity (0,), 0 < t < 1.

As usual, let us define random functions Znk (u) with domains Uk 'A as

follows :

Forn 2t I andk. 1, let

Uk" = n1 ( Sk - Qk ) (4.10)

and for u c Uk n ,

Zk' (u) = 1 ( ek + n- u )- ( Qk ). (4.11)

Let gtn .[0,o-) --. R1 be given by,

g n (x) = C n1- 20 k- 2q x 2 - n k2q I 1O - Qk II (4.12)
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where C > 0 depends on 0 alone.

Lemma4.2 ForuEUkn,

1 nn
E exp ( - Zk (u)) _< exp ( - gf ( Iu II)).

2

Proof : In view of (4.9) and (4.1 1),

1- n 0k + n-P u

Zk' (u) = -n 1- f ut dt + In ( )t dcoit.

Recall that, under PnO, ( ot' ), 0 5 t < 1 are i.i.d. Poisson processes with

common intensity (0t), 0 < t < 1. Hence,

I n -13 1
E exp(2 fZ '(u)) =exp(- 2  oudt)

ii Ok + n- u
n E exp(- In ( Ok )e dw' .
1 2

1~ Ok nk~

Setting fs 1 Qk + u ), and then using Lemma 4.1 in the second
2 O

factor in the above product we have

EIx ( n1-13 t
E exp( - k-n(u)) =exp( 2 f u dt)

t O~k+ n-0 u 2i
II

•ep - o[ 1 -( k )3U 2 0t dt). (4.13)

Let F (x) = 1- ( a ) where a > 0 and xe(-a,a). Then by
a

Taylor's formula we have

2 -3
-x x2  2)

F (x)= + (a + x
2a 4 oa

for some x*. x e=(O,x) (or (x,O) as the case may be).
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Taking a = Qk (t) and x = n-0 u , the RHS of (4.13) can be written as

ex ( 1_3  I n-1 0t

exp f ut dt + 2dto ut dt

1-20 1 2 -3
n 4 Ut (2k + n- 0u*)t 2

0, (0- OkX)

Writing = 1 + in the second term, the above quantity
Ok (t) @k ()

takes the form

n11 (0-Q 0)t

exp ( k ut dt

1- 2P 2 -3

4Ok + n - * )t'2  tdt). (4.14)

0 k( t

Note that, since it is a member of Sk, ak (t) > k- q > 0 for every t. Let us

consider the first term in the exponent above. From the

Cauchy-Schwartz inequality,

n 1_0 Q -9k )tI d<h-1IIU
2 f I Ut k(t) I -t- 11 ek II - 0ok 11.

However, note that,

Ut  1 <_ 2 n 0 k2q;

Qk (0

because, (i) -.keSk implies that k- q  k (t) < kq for all t and (ii) uE Uk n

implies that I ut I < 2 nP kq; therefore,

ut 2 nO kq  2I ~ I!<5 2 nO k q

Qk () 
k-q

Hence II .U- II 5 2 nD k2q and therefore,

S- f I ut  I d S-L- 2 n k2q  II 0- Ok 11.(4.15)

0 QA M 2
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Now consider the second term in the exponent of (4.14). First, since 0 ( 0 Lherc

exist m o and M o such that, 0< m o < 0t < M o < -. Furthermore,

-3
(0Qk + n-13 u* )t

_+n__ > k- 2q  for all t.
'l-k (M

This is so because, u ; (0.i:) (ie. Iu 1 -<  i ut 1). imrnI:- 01

Ok + n-13 u* is a member of Sk (so is _k) and therefore,

k-q < (_k + n - P U )t < kq

and

k -q < _k )t <5 k q  f or all t.

Hence,

-3

( _ U* 2 
1Qk += I ( _k t ( _k +  n- 03 u ' )3 } 2 >- k - q .

\"_k (tJ

Therefore,

n 1-213 t2 -3

4 o f _k + n- u* )2 2 O, dt

< nl-23 r k- 2q  II u 112. (4.16)4

From (4.15) and (4.16) we then have

n1-13 t 0 _I)

exp ( -n-j- f0 u _k ) dt

1-20 2 3

-ni-
1  Ut (kn u)l2

0 4 Qk(~ Md

!5 exp( 2 2nnk I Ok 4 nk-213
.em(o k -2- Ilull2 ). (4.17)

2 4
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Therefore, in view of (4.14) and (4.17), we have shown that

Eexp(- -Zk (u))< exp(-COnl-2-Pk -2 q IluII2 +nk 2q 11 6 -k

= exp( - ( II i));

which completes the proof.

Lemma 4.3 For u,v E Uk ,

E I Zk n (u) - Zk n (v) 12k < B n k I u - 12k

where

Bnk = 2 3k+1 n 2k(1-03)+1 k 2 k(l+q) M0 2 k.

The proof of this lemma is very similar to the proof of Lemma 3.3 and we omit it.

Lemmas 4.2 & 4.3 verify all the conditions of Corollary 2.1 (the verification being

quite routine) and thus Theorem 4.1 is proved. The deduction of Theorems 4.2 -

4.4 from Theorem 4.1 is also straightforward.
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